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A norm-bounded locally optimal control is constructed which minimizes the frequency and phase deviations from resonance in 
a non-linear system affected by bounded perturbations. It is shown that this control is independent of the form of the perturbation 
and the structure of the conservative part of the system. As an example, frequency and phase controls of forced oscillations in 
a system of two weakly coupled oscillators are constructed. © 2004 Elsevier Ltd. All rights reserved. 

It is well known that the analysis of the perturbed motion in the neighbourhood of resonance is similar 
to the analysis of the motion of "an equivalent pendulum" [1, 2]. The phase and frequency of the 
pendulum oscillations correspond, respectively, to the phase and frequency deviations from the resonance 
surface of the initial system (phase and frequency detuning). The phase plane of the pendulum is divided 
into the domains of oscillations and rotation separated by the separatrix, which is interpreted as the 
separatrix of resonance. The passage through the separatrix from the domain of bounded oscillations 
to the domain of rotation corresponds to unlimited frequency detuning and breakdown of resonance. 
The purpose of the control is to prevent the system from escaping from the admissible domain as a 
result of the perturbation. 

This model enables one to use the well-developed asymptotic methods of controlling oscillatory system 
[3, 4]. Formally, the averaging procedure can be applied to a fairly wide range of systems. However, in 
practice the optimal control problem is prohibitively difficult if a non-linear system is considered over 
a relatively long time interval until it escapes from the near-resonance region. In practice, this problem 
can be resolved explicitly only for a single-degree-of-freedom system [5, 6]. 

The solution can be simplified if the motion is considered within a bounded domain over a relatively 
short time interval. A similar problem for the stochastically induced escape from the near-resonance 
region was discussed in [7]. 

This paper substitutes the locally optimal control problem [8] for the problem of a control preventing 
the escape from the near-resonance. Locally optimal control minimizes the phase and frequency detuning 
at each instant of time. The use of locally optimal control does not require a detailed specification of 
the properties of the perturbation. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  
B A S I C  E Q U A T I O N S  

Consider a two-frequency system with a scalar slow variable. An extension to a multidimensional system 
is discussed in Section 2. 
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The equations of motion are reduced to the standard form with slow and fast variables 

.~ = ef (x ,  01, 02) + e"F(x, 0 l, 02)U + EA(x, 01, 02, ~(t)) ,  X E X, u E U 

Oi = Oi(X) + e.f i(x, 01, 02) + 8nGi(x, 01, 02)u + 8Ai(x, 01, 02, ~(t)) 
(1.1) 

where 0i(mod 2n), i = 1, 2 ,Xis  an open domain, Uis a compactum in R1 and e > 0 is a small parameter. 
The exponent n in the coefficient e n is chosen in such a way that control remains weak but counteracting 
the external perturbation in accordance with the requirements of the problem. 

The right-hand sides of system (1.1) are assumed to be 2n-periodic in the fast phases 01 and 02 and 
smooth enough in all the variables. The smoothness assumptions imply that a solution of system (1.1) 
exists and the requisite transformations are valid for any admissible control. The perturbation ~(t) is 
assumed to be bounded, that is I~(t) I -< ~0 for all t ___ to. If ~(t) is a random process, it is assumed to be 
bounded with probability 1. 

We will specify the resonance relations between the system frequencies [1, 2]. Consider the time 
average of the function f(x, 01(0, 02(0) in the form 

T 
1 

O(x, Ol, O2) = lim ~,.[f(x, o l t  + o~ 1, 02t  + t~2)dt 
T ~ * * A a  

0 

The function O(x, 01, o2) is assumed to be independent of the arbitrary phases oq, 0~2 and discontinu- 
ous in the line 

p(x) = mttol(X) + m2t.02(x ) = O (1.2) 

where ml and mE are certain integers not equal to zero simultaneously. Equation (1.2) determines the 
resonance relation between the system frequencies. We also assume that Eq. (1.2) has a unique solution 
x* such that 

p(x*) = 0, dp(x* ) ldx  -- r ~ O  (1.3) 

Suppose the time averages of the functions A(x, 01(t), 02(t), ~(t)) and Gi(x , 01(t), 02(0) do not yield 
new resonance relations in a small neighbourhood of the point x*, that is they are continuous for any 
relations between the frequencies Ol(X*) and c02(x*). 

Suppose the unperturbed system exhibits stable resonance oscillations with frequencies c01(x*) and 
o2(x*) satisfying Eq. (1.2). The purpose of the control is to keep the frequencies in the near-resonance 
region when there are perturbations resulting in the variable x deviating from the reference value 
x = x* and violating the resonance relation (1.2). We will formulate this requirement as a control problem. 
We will specify an admissible domain of motion and construct a control which minimizes the deviations 
of the frequency from the resonance values. 

Following the standard approach [1, 2], we introduce the variables aJ and 9, representing the frequency 
and phase detuning, respectively. We write 

~1) = p(x)  = mlOl(X ) +m202(x ) ,  ~ = el/2, 9 = ml01 +m202 (1.4) 

Conditions (1.3) and (1.4) imply the following relations in the near-resonance region 

x = X()av) = x*+p .x l+ l a  2, x I = r-Iv; 01 = 0, 02 = m21(9-ml  0) (1.5) 

Substituting Eqs (1.4) and (1.5) into system (1.1) we obtain equations in standard form with the small 
parameter B 

0 = B[f*(9 ,  O) + A*(9, O, ~(t))] + 2 n - I F , ( 9  ' O)u + B2RI(D , 9, O, u, ~(t), ~l,) 

~o = B y +  p2#G*(9, O)u + [A2R2(1), 9, 0, U, ~(t), B) (1.6) 

0 = tO*+~t['2V+gt2nG~(9,0)u+~t2R3(o, 9 ,0 ,  u,~(t) ,~t  ) 
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where 0 = 01, 03* = 031(x*) and f~ = 03ix(X*). The coefficients on the right-hand side of system (1.6) are 
defined by the relations 

Z*(~ ,  0) = r - lZ(x  *, 0, 02({p, 0))  

G*(9, O) = m l G l ( X *  , 0, 02((p, O)) +m2G2(x* ,  O, 02(tp, 0))  
(1.7) 

where Z = (f, A, F, G1) and Z* = (f*, A*, F*, GI*). The residual terms R i on the right-hand side of 
(1.6) vanish as kt ---) 0, and their explicit form is unimportant. 

Let us define the admissible domain of motion. We will consider the conservative subsystem of system 
(1.6), namely, 

o = u~(~), ¢ = ~tÜ (1.8) 

where [~(tp) = (fl0P, 0)), and the symbol ( ) denotes averaging in the fast variable 0 over the period. 
Equations (1.8) describe the motion of the conservative system with the Hamiltonian 

H~t(~, o) = ~tH(9, v),  H(~ ,  v) = U(~ )  + o2/2 (1.9) 

where U(~p) is a periodic potential function such that U~0(tp) = -13(9). The solutions ~p* and tp s of the 
equation [3(tp) = 0 determine the minimum and maximum of the function U(cp), respectively. We have 

U(tp*) = 0, U~¢(~*) = -[~¢(~*) = -k  2 < 0  

at the minimum point, and 

u(q¢) = H', U,p,p(q¢) = -fl,p(q¢) > 0 

at the maximum point. 
In the phase plane of the pendulum the domain of oscillations corresponds to the closed domain 

confined to the homoclinic separatrix. The points tp -- q~S, a) = 0 correspond to the vertices of the 
separatrix, and the steady-state point tp = tp*, a) = 0 determines the parameters of stable resonance in 
the unperturbed system. Passage through the separatrix from the domain of oscillations to the domain 
of rotation is associated with unlimited phase detuning and with breakdown of resonance. Hence the 
admissible domain of motion is defined by the conditions (a~, q~) e E. 

This implies that control of the oscillation frequency in the near-resonance region can be interpreted 
as control of the perturbed motion of the pendulum within the admissible domain Z. In this case, the 
energy of the pendulum (1.9) can be considered as a measure of the deviation of orbits (1.6) from the 
steady-state point. 

Suppose (v(t0), tP(t0)) e ~ at the initial instant to. We construct a locally optimal control minimizing 
the derivative 

J(u) = /-/ (1.10) 

for each t under the constraint ]u [ < U0. The locally optimal control is defined as [8] 

Uop t = argminJ(u) (1.11) 
lul ~ U0 

It follows from definitions (1.10) and (1.11) that control (1.11) provides the maximum decrement of 
the pendulum energy at each instant t. This corresponds to minimization of the pendulum deviations 
from the unperturbed state cp = cp*, a9 = 0. 

Calculating the derivative (1.10) by virtue of Eq. (1.6) we obtain 

= - [~(tp)~ + Oi) = -~(q0)[~'0 + ~2nG*(tp, 0)u + ~t2R2] + 

+ IJ{~t[f*(tp, O) + A*(tp, 0, ~(t))] + 2n- IF , (q  L 0)u + g2R l } = (1.12) 

= I.to[b(tp, 0) + A* (~0, 0, ~(t)) + ~2n-2F*(tp, 0)u] - I.t2nl~(tp)G*(tp, 0)u + ~I.2R 
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where bop, 0) = f*(tp, 0) - ~(tp), (bOp , 0)) = 0. The coefficient R comprises the residual terms, which 
have no effect on further transformations. 

The introduction of the small parameter IX enables us to construct a near-optimal control u* of 
relatively simple structure such that u* ~ Uopt as IX ~ 0. We will consider the near-optimal control for 
two types of controlled systems. 

1. F(x, 01, 02) ~ 0. In this case we let n = 1. Then, as Ix ~ 0, the control term in the first of Eqs (1.6) 
is of the leading order, whereas the control terms in other equations are small. In view of the order 
relations among the terms on the right-hand side of Eq. (1.12), we obtain as IX ~ 0 

u* = -U0signF*({ p, 0)signv (1.13) 

Control (1.13) produces a moment which counteracts the frequency detuning. Formulae (1.7) and 
(1.13) yield a feedback control in the form 

u°(x, y, e l, 02) = -U o sign [r -I F(y, ep 02)] sign I) (1.14) 

Substituting the control laws (1.13) or (1.14) into Eq. (1.1) and repeating all the above transformations, 
we obtain that Eqs (1.6) and the values of the functionals (1.10) are identical when u = u* and u = u °. 
Controls (1.13) and (1.14) are independent of the perturbation and of the structure of the uncontrolled 
subsystem. The only parameter to be determined is the sign ofr. Near-optimality of controls (1.13) and 
(1.14) can be proved in a standard way. 

We will estimate the limiting control performance. Substituting controls (1.13) or (1.14) into system 
(1.16) and averaging all terms except the perturbation, we obtain a partially averaged system of the 
form 

00 = IX[I3(tp0) + A*(tp0, 0, ~(t)) - Uofo(tPo ) sign v0] 

(% = lay0, O = to* +laf~v 0 
(1.15) 

wheref0(q>) = (IF*(~p, 0) I), that isf0(tp) > 0. The change in total energy of system (1.15) can be written 
a s  

~" = IX[- ~(tpo)O0 + Ooi) 01 = IX[- U0f0(tP0)lVol + A*(tpo, 0, ~(t))u0] (1.16) 

It is obvious that the perturbation increases the deviations from the reference position but the control 
force decreases the deviations compared with the uncontrolled system. 

In general, estimation of the limiting control performance is quite complicated. However, if I A*(%, 
0, ~(t)) I < A0 and Uofo(%) > A0 for all admissible values of the variables tp0, 0 and ~(t), then E(t) < 0 
at each instant t. This implies that the detuning decreases at each instant t, and tp ~ tp* and ~ --+ 0 as 
t ----) ~ .  

The estimate of the limiting performance can be improved if the perturbation properties are specified. 
Let ~(t) be a periodic or quasi-periodic process such that the limit 

T 
1 , 

lim ~,,[A (tp, to*t, ~(t))dt = 0 
T .--.} ~ l . I  

0 

(1.17) 

exists uniformly in ~p e ~. Then, replacing the partially averaged system by the averaged one and 
calculating the total energy of the averaged system, we obtain 

IE = -Ix Uof  o( ~oo>lvol < 0 (1.18) 

It is easy to see that the detuning decreases at each instant t, and tp ~ tp* and v ~ 0 as t ---> oo for 
any U0 > 0. 

The physical interpretation of this result follows from Eq. (1.15). It means that the effect of controls 
(1.13) and (1.14) on the "equivalent pendulum" is similar to the effect of the maximum admissible 
Coulomb friction. 

Under the assumptions made, the control directly affects the frequency detuning v, whereas the phase 
detuning tp changes by virtue of Eqs (1.6) or (1.8). We define the function 
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H v = V2/2 (1.19) 

as a measure of the frequency detuning. We construct a control u, v which minimizes the derivative 
/-:/~(t) at each instant t under the constraint l u ~ [ < U0, that is 

jO(u ) . o  ~, 
= H , u = argminJ° (u )  (1.20) 

lul ~ Uo 

In the same way as before we find that 

o u* -UosignF*(q), 0) sign v (1.21) 

The control (1.21) and thus the controls (1.13) and (1.14) can be interpreted as frequency controls. 
2. F(x,  01, 02) = 0. In this case we put n = 1/2. Under  this assumption, there is no control in the first 

equation of system (1.6) and is weak in the other equations. An interesting example is considered in 
Section 2. 

It follows from conditions (1.11) and (1.12) that 

u* = UosignG*(q),0)signl3(q)) (1.22) 

as ~t ~ 0. In the admissible domain ~ the variable q) changes between the phases q)* and q)s, corresponding 
to the minimum and maximum of the potential function U(q)). In particular, this implies that 

signU~(q)) = sign(q)- q)*) (1.23) 

in the admissible domain. Considering the equality U~(q)) = -[3(q)) and taking into account relations 
(1.7), (1.22) and (1.23), we find 

u* = -UosignG*(q ) ,  0)sign(q)-  q)*) 

u°(x, 01, 02) = - U o s i g n [ m l G l ( x ,  01, 02) + (1.24) 

+m2G2(x, 01, 02)]sign(q)-q)*), q) = ml01 +m202 

Substituting control (1.24) into Eq. (1.6) and averaging all terms except the perturbation, we obtain 
the partially averaged system 

Oo = B[~(q)o) + A*(q)o, O, ~( t ) ) ]  

tp o = I.t[V o -  Uogo(q)o)sign(q)o- q)*)] (1.25) 

0 = tO* + I.tflV 0 

where g0(q)) = (I G*(q), 0) l), that is g0(q)) > 0. In general, it is difficult to estimate the limiting control 
performance. However, if condition (1.17) holds, the averaging procedure results in the reduced system 

Oo = I'tl$(q)o), {Po = ~[Vo-Uogo(q)o)sign(q)o-q)*)] (1.26) 

Taking into account that [3(q)) = -U~(q)) and using relations (1.23), we write the equation for the change 
in total energy 

/~ = B[-  ~(q)o)~Oo + VoOo] = -~Uogo(q)o)l~(q)o)l < 0 (1.27) 

It follows from inequality (1.27) that q) -~ q)* and a) --~ 0 as t -~ ~ if condition (1.17) holds. 
Under the assumptions made, the control directly affects the phase detuning q), whereas the frequency 

detuning v satisfies Eq. (1.25). We define a measure of the phase detuning as 

H <p = (q)- q)*)2/2 (1.28) 
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We construct a control u ~, which minimizes the derivative/:/~ at each instant t under the constraint 
l ul - u0. Let n = 1/2. Differentiating the function (1.28) by virtue of Eq. (1.6) we obtain 

H~ = ~t(o(9- 9*) = la[v + G*(9, 0 ) u ] ( 9 -  9*) (1.29) 

as g -4 0. The higher-order terms are neglected. Minimizing the right-hand side of Eq. (1.29) under  
the constraint l u I --- U0 we obtain 

u * = u* = -U0signG*(9,  0 ) s i g n ( 9 -  9*) (1.30) 

Control (1.30) and correspondingly, controls (1.24) can be interpreted as phase controls. 
Equalities (1.21) and (1.30) imply that the general criterion (1.10) can be replaced by criterion (1.19) 

or (1.28), depending on the system structure and the type of control. 

2. F R E Q U E N C Y  C O N T R O L  OF T H E  F O R C E D  M O T I O N  
OF C O U P L E D  O S C I L L A T O R Y  S Y S T E M S  

We will now suppose that a resonance circuit, loosely coupled to the input of the non-linear system, 
enhances a weak periodic excitation. The purpose of the control is to maintain the oscillation frequency 
in the non-linear system when there,are perturbations. Perturbations can appear in the system directly, 
as well as in the resonance and control circuits. We will investigate the feasibility of different phase and 
frequency control schemes. 

A control which directly affects the non-linear system. The equations of motion have the form 

il~ + Eb~ + ~ 2 ¥  + eg l (¥ ,  ~:(t))  = Easinf~t + es(x, ~) 
(2.1) 

X + 8nX + 0#(x) + Eg2(x, ~2(t)) = £q(~ ,  ~/) + £u 

Here O(x) = dFl(x)/dx, where H(x) is the potential function of the conservative part of the system. 
The perturbations ~1,2(t) satisfy the assumptions of Section 1. The terms q(v, ~g) and s(x,/c) describe 
the interaction of the subsystems. The control u is designed following the criteria of Section 1. 

We reduce system (2.1) to standard form. We put:? -- z and introduce the new variablesy and 02 by 
the formulae [1] 

1 2 302 to(y) z(y,x) = + , ] 2 ( y - H ( x ) ) ,  to(y) = 2;t (2.2) 
y = ~z +rI(x) ,  ~ = z(y,x)'  T(y) 

where 

T(y) = dx 
z(y, x) 

y = const  

Relations (2.2) define the functions x = X(y, 02) and 2 = z(y, x) = Z(y, 02). We use the standard 
replacement of the variables ~t and 

= Rcos01, ~ = -f~Rsin0] (2.3) 

Substituting the new variables (2.2) and (2.3) into Eq. (2.1) and using the notation of Section 1, we 
reduce system (2.1) to the form 

R - ~ [ W ( R ,  0 I, 03) + S(y, 02) + AI(R, 01, ~l(t))]  sin01 

5' = e.{f(y, 02) + [Q(R, Oi) + u]Z(y, 02) + A2(y, 02, ~2(t))} 

01 = ~ - ~RR[W(R, 0 I, 03) + S(y, 02) + AI(R , 01, ~(t))]cos01 

3to 
02 = to(y) + 8~y{f (y ,  02) + [Q(R, 0]) + u]Z(y, 02) + A2(y, 02, ~2(t))} 

(2.4) 

03 ---- 
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where 

tI/(R, 0 I, 03) = b~Rsin01 + asin03, f ( y ,  02) ---- _nZ2(y, 02) 

S(y, 02) = s(X(y, 02), Z(y, 02)), Q(R, 0 l) = q(Rcos0 v-f~Rsin01) 

Ai(R, 01 ,~ l ( t ) )  = -gl(RCos01,~2(t))  

A2(Y, 02, ~2(t)) = -g2(X(y,  02), ~2(t))Z(y, 02) 

(2.5) 

The non-linear terms in the equations of motion generate an infinite number of resonance relations 
of the type nco(y) = mr2. Suppose the objective is to maintain the resonance oscillations corresponding 
to the first harmonic. In this case conditions (1.2) and (1.3) take the form 

p(y*) = t o ( y * ) - f i  = 0, dp(y*) /dy  = dto(y*)/dy = r* O  (2.6) 

We will use transformation (1.4) to analyse the motion in the neighbourhood of resonance. We 
introduce the new variables 

9 = 0 2 - 0 3 ,  ¢1 = 0 1 - 0 3 ,  03 = 0 

lay = p(y) = to (y ) -g i ,  b t = el/2 (2.7) 

Substituting relations (2.6) and (2.7) into Eq. (2.4) and neglecting the unimportant higher-order terms, 
we obtain the equations 

/~ = ~t2pI(R, ¢, ~01, 0, ~l(t)) ,  ~D! = g2p2(R, ¢, ¢1, 0, ~l(t))  

i) = ~t[f*(¢, O) + F*(¢,  O)u + Y*(R, ¢, 0) + A~'(0, ~2(t))] = 

= ~t [F*(¢ ,  O)u + V(R, ¢, O, ~2(t) ) ]  
(2.8) 

(p = ~tl)+bt2rV(R,¢,O,~2(t)) ,  0 = 

where 

Y* = r-IQ(R, 0 + ¢ l )Z(y* ,  0 + ¢),  F* = r- lZ(y  *, 0 + ¢) 

The coefficients f*, F* and A~ are defined in the same way as in Section 1. The coefficients P1, 2 are 
obtained by substitutingy = y*, 01 = 0 + q~l, 02 = 0 + q0 into the right-hand sides of the corresponding 
equations of system (2.4). The precise form of the terms P1, 2 is unimportant for the further 
transformations. 

Since the coefficient V in the third equation depends on the slow variable R, system (2.8) does not 
allow of a partition of the conservative subsystem similar to (1.8). However, Eq. (2.8) implies that the 
control u directly affects the frequency detuning v. Hence the control can be based on criterion (1.20). 
By the same arguments as above, we obtain the frequency control 

u = -U0s ignF*(¢ ,0 ) s ignv  (2.9) 

which is identical with (1.21). Since 

F*(¢,O)  = r- lZ(y  * , 0 + ¢ ) ,  Z ( y , O + ¢ )  = 

the feedback control takes the form 

I )  • - I  . 

u = -Uoslgn(r  ~ ) s l g n [ t o ( y ) - ~ ]  (2.10) 

This solution means that, under the assumptions made, the near-optimal control counteracts the 
frequency detuning and is independent of the perturbation and the parameters of the linear subsystem. 
The only parameter necessary for constructing the control is sign = sign %(y*). This parameter can 
be found without calculating the frequency c0(y), namely, r > 0 if the system is "hard", and r < 0 if the 
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system is "soft" in the neighbourhood of the point y*. Note that the control depends on both the slow 
frequency detuning v and on the fast variable 2. 

Control of the excitation frequency. Suppose a control cannot be applied to the system as an external 
force or feedback but can change the excitation frequency. In this case the equations of the controlled 
motion take the form 

+ Ebfl 1 + ~ 2 ~  + eg l ( x ,  ~l(t ,))  = g a s i n 0  3 + I~s(x, ~) 

.£ + en.i¢ + ~ (x )  + eg2(x,  ~2(t) )  = e q ( ~ ,  ~ )  

1) 3 ----- ~'~ "4- EI/2u 

(2.11) 

On the right-hand sides of Eqs (2.11) we have used the same notation as in Eq. (2.1). The changes 
of variables (2.2) and (2.3) transform Eqs (2.11) to the standard form, which is identical with Eqs (2.4), 
if we replace the last equation of system (2.4) by the corresponding equation of system (2.11) and put 
u = 0 in the other equations. 

Formula (2.6) and (2.7) define the resonance relation and the change of variables in the near-resonance 
region. The equations of motion in the new variables take the form 

R = ~2pl,  ~1 = - ~ u + ~ 2 P  2 

o = ~ v ,  ~ = ~ u - ~ u + ~ 2 r V ,  0 = ~-~+~u 
(2.12) 

The functions P1, 2 and V are defined as in system (2.8). 
The control u occurs in three equations of system (2.12). If the problem is to maintain the resonance 

oscillations of the non-linear subsystem regardless of the resonance circuit dynamics, we can construct 
a control which minimizes criterion (1.28). Arguing as above, using formula (1.30), and considering 
G* = -1 in system (2.12), we obtain 

u * = U0sign( 9 -  tO*) (2.13) 

Control (2.13) counteracts the phase detuning and is independent of the perturbation and the parameters 
of the non-linear system and the resonance circuit. 
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